Powłoki antyrefleksyjne otrzymywane metodami zol-żel oraz ALD do zastosowań w krzemowych ogniwach słonecznych - OGNIWA SŁONECZNE - POWŁOKA ANTYREFLEKSYJNA
Farnell, An Avnet Company   Przedstawicielstwo Handlowe Paweł Rutkowski   Phoenix Contact Sp. z o.o.  

Energetyka, Automatyka przemysłowa, Elektrotechnika

Dodaj firmę Ogłoszenia Poleć znajomemu Dodaj artykuł Newsletter RSS
strona główna ARTYKUŁY Elektronika Powłoki antyrefleksyjne otrzymywane metodami zol-żel oraz ALD do zastosowań w krzemowych ogniwach słonecznych
drukuj stronę
poleć znajomemu

Powłoki antyrefleksyjne otrzymywane metodami zol-żel oraz ALD do zastosowań w krzemowych ogniwach słonecznych

The application of one or more antireflection coatings on the front surface of the solar cells reduces the reflection of the incident light, which increases the device efficiency. For solar cells it is important to have a minimum reflection over all the visible spectrum range [1]. The studies of solar cells can be divided into two approaches. One is to reduce production costs, the second is to increasing efficiency of solar cells.

The design of low-cost antireflection coatings is possible by using the sol gel method. It is a process for preparing materials at low temperatures from solutions. We can produce different forms of materials include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organicinorganic materials and composites. Controlling of the physical and chemical parameters of production process gives materials with precisely adjusted parameters such as mechanical strength, transparency, size and distribution of the pores. Generally the sol gel method consists in a few steps as shown in Fig. 1 [2–4].

There are many kinds methods of deposition antireflection coatings from solutions. For example, by spinning, dipping or spraying. Spin coating is a fast and easy method to prepare thin and homogeneous organic and inorganic films. Spin coating is a procedure used to deposit uniform thin films onto flat substrates. An excess amount of a solution is placed on the substrate, which is then rotated at high speed in order to spread the fluid by centrifugal force. A typical spin process consists of a dispense step in which the fluid is deposited onto the substrate surface, a high speed spin step to thin the fluid, and a drying step to eliminate excess solvents from the resulting film (Fig. 2) [6–9].

Rys. 1. Schematyczne przedstawienie metody zol-żel [5]

Fig. 1. Schematic representation of the sol-gel method [5]


Rys. 2. Schematyczne przedstawienie metody rozwirowania

Fig. 2. Schematic representation of the spin coating method


Rys. 3. Schematyczne przedstawienie jednego cyklu w procesie atomowego osadzania warstwy (ALD)

Fig. 3. Schematic representation of one cycle of the atomic layer deposition (ALD) process


The design of antireflection coatings with very low reflection is possible by using the atomic layer deposition method (ALD). It is a process which is based on the sequential self-limiting surface reactions from generally two gaseous precursors coating [10]. By depositing one layer per cycle, ALD offers extreme precision in ultra-thin film growth since the number of cycles determines the number of atomic layers and therefore the precise thickness of deposited film.

Schematic representation of one cycle of the atomic layer deposition (ALD) process is shown in Fig. 3.

In the study of antireflection coatings it is important to optimize their surface topography, thickness, and therefore their optical properties. For this purpose very useful are microscopic and spectroscopic studies.


TiO2 thin films were prepared by the sol–gel spin coating technique. The Titanium isopropoxide was used as precursor material.

Absolute ethyl alcohol was used as a solvent and hydrochloric acid as a catalyst. The mixture was vigorously stirred using a magnetic stirrer for 2 h. Then the solution was spin coated with the various spin speed (2000, 3000 and 4000 rpm) on the polished monocrystalline silicon substrates and heated at 600°C for 2h. The whole process was in accordance with the scheme shown in Fig. 4.

The Al2O3 thin films was prepared by the atomic layer deposition technique. Trimethylaluminum (TMA) was used as precursor material. ALD process was carried out in such a way as to obtain a layer thickness of 60, 80 and 100 nm. The thin films was deposited on the monocrystalline silicon substrates with the texture.

The obtained layers were studied using atomic force microscope (AFM) and spectrometer UV/VIS.


Rys. 4. Schematyczne przedstawienie procesu

Fig. 4. The schematic representation of the process



The atomic force microscope was used to investigate the surface topography of obtained thin films. The representative pictures of the surface of sol gel thin films TiO2 and ALD thin films Al2O3 are shown in Fig. 5 and 6.

As shown in the Fig. 5 the thin film deposited at 4000 rpm spin rate is uniform without any major irregularities. Similarly, the Fig. 6 shows that the texture pyramids were covered evenly with Al2Olayer.

The UV/VIS spectrometer was used to investigate optical reflection of the obtained thin films (Fig. 7–9). Reflectance spectra were taken on sol-gel prepared TiO2 thin films before and after heat treatment. The minimum values of the reflection were obtained in the wavelength range 500…700 nm and ranged between 1…7%. With the increase of spin speed the range is shifted to lower wavelengths. The heat treatment at 600°C has worsened the optical properties of the deposited thin films.

The minimum values of the reflection (for the ALD Al2O3) were obtained in the wavelength range 360…1000 nm and ranged between 0.2…7%.

It is expected that the shape of the reflectance spectrum of TiO2 films is modified by interference effects. Such effects are missing in case of ALD deposited Al2O3 thin films.

Rys. 5. Topografia powierzchni cienkiej warstwy TiO2 osadzonej z prędkością 4000 obr/min na monokrystalicznym krzemie

Fig. 5. The AFM topography image of the surface of thin film TiO2 coated with a spin speed 4000 rpm on the monocrystalline silicon 


Rys. 6. Topografia powierzchni cienkiej warstwy Al2O3 osadzonej na teksturowanym monokrystalicznym krzemie metodą ALD

Fig. 6. The AFM topography image of the surface of ALD thin film Al2O3 deposited on the monocrystalline silicon with the texture


Rys. 7. Odbicie w funkcji długości fali dla cienkich warstw TiO2 osadzonych z trzema różnymi prędkościami (2000, 3000 and 4000 obr./min.)

Fig. 7. Reflection as a function of wavelength, for the TiO2 thin films obtained with three different spin speed (2000, 3000 and 4000 rpm)


Rys. 8. Odbicie w funkcji długości fali dla cienkich warstw TiO2 osadzonych z trzema różnymi prędkościami (2000, 3000 and 4000 obr./min.) i po obróbce cielnej

Fig. 8. Reflection as a function of wavelength, for the TiO2 thin films obtained with three different spin speed (2000, 3000 and 4000 rpm) after heat treatment


Rys. 9. Odbicie w funkcji długości fali dla cienkich warstw Al2O3 osadzonych z trzema różnymi grubościami (60, 80 oraz 100 nm) metodą ALD

Fig. 9. Reflection as a function of wavelength for the Al2O3 thin films with three different thickness (60, 80 and 100 nm) obtained by ALD method




The both methods (sol gel and ALD) are provide a uniform coating of substrates. The sol-gel method allows the coating of substrates with low surface roughness and the ALD method allow the coating of the substrates of different shapes. Definitely better results of reflection were obtained for the ALD thin films. The reflection was about range 0.2…7%. for the wavelength from 360 to 1000 nm. Reflectance spectra of TiO2 thin films are modified by interference effects. 



Marek Szindler is a holder of scholarship from project POK L.04.01.01-00-003/09-00 entitled „Opening and development of engineering and PhD studies in the field of nanotechnology and materials science” (INFONANO), co-founded by the European Union from financial resources of European Social Fund and headed by Prof. L.A. Dobrzański.



[1] Bouhafs D., Moussi A., Chikouche A., Ruiz J.M.: Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells. Solar Energy Materials and Solar Cells, 52, 1–2, 1998, 79–93.

[2] Gvishi R.: Fast sol–gel technology: from fabrication to applications. Journal of Sol-Gel Science and Technology, 50, 2, 2009, 241–253.

[3] Podbielska H.: Sol-gel materials for biomonitoring and biomedical applications, 2002.

[4] Kumar A., Gaurav, A. Malik, D. Tewary, B. Singh,: A review on development of solid phase microextraction fibers by sol–gel methods and their application. Analytica Chimica Acta, 3, 610(1), 2008, 1–14.

[5] Ertl G., Knözinger H., Weitkamp J.: Preparation of solid catalysts, 1999.

[6] Chwastek M., Weszka J., Jurusik J., Hajduk B., Jarka P.: Influence of technological conditions on optical properties and morphology of spin-coated PPI thin films. Archives of Materials Science and Engineering, 48, 2, 2011, 69–76.

[7] Hajduk B., Jarka P., Weszka J., Bruma M., Jurusik J., Chwastek M., Mańkowski D.: Studying of polyoxadiazole with si atom in the backbone. Archives of Materials Science and Engineering, 42, 2, 2010, 77–84.

[8] Abedrabboa S., Lahlouha B., Shetc S., Fioryb A.T.: Room-temperature silicon band-edge photoluminescence enhanced by spin-coated sol-gel films. Scripta Materialia, 65, 767 2011, 1–8.

[9] Weszka J., Szindler M. M., Chwastek-Ogierman M., Bruma M., Jarka P., Tomiczek B.: Surface morphology of thin films polyoxadiazoles. Journal of Achievements in Materials and Manufacturing Engineering, 49, 2, 2011, 224–232.

[10] Violet P., Blanquet E., Monnier D., Nuta I., Chatillon C.: Experimental thermodynamics for the evaluation of ALD growth processes. Surface & Coatings Technology, 204, 6–7, 2009, 882–886.

follow us in feedly
Średnia ocena:

Otrzymuj wiadomości z rynku elektrotechniki i informacje o nowościach produktowych bezpośrednio na swój adres e-mail.

Zapisz się
Administratorem danych osobowych jest Media Pakiet Sp. z o.o. z siedzibą w Białymstoku, adres: 15-617 Białystok ul. Nowosielska 50, @: biuro@elektroonline.pl. W Polityce Prywatności Administrator informuje o celu, okresie i podstawach prawnych przetwarzania danych osobowych, a także o prawach jakie przysługują osobom, których przetwarzane dane osobowe dotyczą, podmiotom którym Administrator może powierzyć do przetwarzania dane osobowe, oraz o zasadach zautomatyzowanego przetwarzania danych osobowych.
Komentarze (0)
Dodaj komentarz:  
Twój pseudonim: Zaloguj
Twój komentarz:
dodaj komentarz
Elektronika - Konstrukcje, Technologie, Zastosowania
Elektronika - Konstrukcje, Technologie, Zastosowania
ul. Chmielna 6 m. 6, Warszawa
tel.  (+48 22) 827 38 79
Nasze serwisy: